Guidance Note

Safe stone product fabrication and installation

Protecting workers from silica exposure

2018
Disclaimer

The information contained in this publication is provided in good faith and believed to be reliable and accurate at the time of publication. However, the information is provided on the basis that the reader will be solely responsible for assessing the information and its veracity and usefulness.

The State shall in no way be liable, in negligence or howsoever, for any loss sustained or incurred by anyone relying on the information, even if such information is or turns out to be wrong, incomplete, out-of-date or misleading.

In this disclaimer:

State means the State of Western Australia and includes every Minister, agent, agency, department, statutory body corporate and instrumentality thereof and each employee or agent of any of them.

Information includes information, data, representations, advice, statements and opinions, expressly or implied set out in this publication.

Loss includes loss, damage, liability, cost, expense, illness and injury (including death).

Reference

© State of Western Australia (Department of Mines, Industry Regulation and Safety) 2018

This publication is available on request in other formats for people with special needs.

Further details of resources safety publications can be obtained by contacting:

Department of Mines, Industry Regulation and Safety
303 Sevenoaks Street
Cannington WA 6107
Telephone: +1300 307 877 (general enquiries)
NRS: 13 36 77
Email: safety@dmirs.wa.gov.au (general enquiries)

Under this licence, with the exception of the Government of Western Australia Coat of Arms, the Department's logo, any material protected by a trade mark or license and where otherwise noted, you are free, without having to seek our permission, to use this publication in accordance with the licence terms.

We also request that you observe and retain any copyright or related notices that may accompany this material as part of the attribution. This is also a requirement of the Creative Commons Licences.

For more information on this licence, visit creativecommons.org/licenses/by/4.0/legalcode

Under this licence, you are free, without having to seek our permission, to use this publication in accordance with the licence terms.

We also request that you observe and retain any copyright or related notices that may accompany this material as part of the attribution. This is also a requirement of the Creative Commons Licences.

For more information on this licence, visit creativecommons.org/licenses/by/4.0/legalcode
Guidance Note

Safe stone product fabrication and installation
Protecting workers from silica exposure

2018
Foreword

This guidance note is issued by the Commission for Occupational Safety and Health (the Commission) under the provisions of the Occupational Safety and Health Act 1984 (OSH Act).

The OSH Act establishes the tripartite Commission, which consists of representatives of employers, unions and government, as well as experts. The Commission has the function of developing occupational safety and health legislation and supporting guidance material, and making recommendations to the Minister for Commerce and Industrial Relations for their implementation. To fulfil its functions, the Commission is empowered to establish advisory committees, hold public inquiries, and publish and disseminate information.

The Commission's objective is to promote comprehensive and practical preventive strategies that improve the working environment of Western Australians. This guidance note has been adapted from a publication by Work Health andSafety Queensland, via a tripartite consultative process among Western Australian stakeholders including employers, unions, government and experts.

The following information is provided as background to understanding this guidance note.

Legislative framework

The Occupational Safety and Health Act 1984

The OSH Act provides for the promotion, co-ordination, administration and enforcement of occupational safety and health in Western Australia. It applies to all industries with the exception of mining and petroleum.

With the objective of preventing occupational injuries and diseases, the OSH Act places certain duties on employers, employees, self-employed people, manufacturers, designers, importers and suppliers.

The broad duties established by the OSH Act are supported by a further tier of statute, commonly referred to as regulations, together with lower tiers of non-statutory codes of practice and guidance notes.

Occupational Safety and Health Regulations 1996

The Occupational Safety and Health Regulations 1996 (OSH regulations) have the effect of spelling out specific requirements of the legislation. They may prescribe minimum standards and have a general application, or define specific requirements related to a particular hazard or type of work. They may also allow licensing or granting of approvals and certificates etc.

Regulations and codes of practice

If there is a regulation about a risk in the OSH regulations, it must be complied with.

If there is a code of practice about a risk, either:

- follow the advice stated in the code of practice; or
- adopt and follow another way that gives the same level of protection against the risk.

If there is no regulation or code of practice about a risk, choose an appropriate way and take reasonable precautions and exercise proper diligence to ensure obligations are met.

Guidance notes published by the Commission

A guidance note is an explanatory document issued by the Commission providing detailed information on the requirements of legislation, regulations, standards, codes of practice or matters relating to occupational safety and health.

Scope and application of this guidance note

This guidance note applies to all workplaces in Western Australia covered by the OSH Act. It provides guidance for employers and workers on silica hazards and some of the legislative requirements in the OSH Act and OSH regulations. This guidance note does not address other hazards that may be present in workplaces that fabricate stone products including benchopts.

It is not possible to deal with every situation that may be found at workplaces. Therefore, the practical guidance in this document should be considered in conjunction with the general duties in the OSH Act, as well as specific requirements in the OSH Act and the OSH regulations.
Contents

Protecting workers from exposure to respirable crystalline silica - guide to safe stone product and benchtop fabrication and installation .. 2

Introduction .. 2
 The stone benchtop industry .. 2
 Why is silica a concern for workers in stone benchtop and other stone product fabrication and installation? ... 3
 What can be done to protect workers from exposure to RCS? 3
 Prohibit uncontrolled dry cutting, grinding or polishing 3
 Use engineering controls ... 3
 Isolate workers from dust generating processes ... 4
 Work practices ... 4
 Ventilation ... 5
 Cleaning and housekeeping ... 5
 Personal protective equipment and worker decontamination............................. 5
 Use respiratory protective equipment ... 5
 Control exposure during installation of stone benchtops and other stone products...... 8
 Providing information, training, instruction and supervision 9

Provide health surveillance for workers exposed to RCS .. 9
 How to choose a suitable medical practitioner .. 9
 Testing required ... 10
 Who pays for health surveillance? .. 10
 What to tell the Appointed Medical Practitioner .. 10
 Informing workers’ of their results .. 10
 Informing the WorkSafe Commissioner .. 10

Consulting with workers .. 10
 Acknowledgement ... 11
 Further information .. 11
Protecting workers from exposure to respirable crystalline silica - guide to safe stone product and benchtop fabrication and installation

Research in Australia and overseas has found that workers fabricating benchtops from stone can be exposed to levels of respirable crystalline silica (RCS) which are hazardous to their health. The effective control of occupational exposure can be achieved by the application of a range of known isolation, dust suppression, dust extraction, respiratory protection and housekeeping control options.

This guide outlines how to control exposure to airborne RCS dust during fabrication of stone benchtops or similar stone products and the health effects of breathing RCS dust.

Introduction

Stone benchtops, stone cladding and similar products are made from natural or engineered stone. The crystalline silica content in stone benchtops can vary widely depending on the type of stone used.

Engineered stone products can contain up to 95 per cent crystalline silica whereas a natural stone such as granite may contain from 20 to 60 per cent.

Crystalline silica commonly occurs in nature as the mineral quartz, and is found in granite, sandstone, quartzite, various other rocks, and sand.

Workers may be exposed to crystalline silica when cutting, grinding, sanding and polishing, or during the installation of stone benchtops and other stone products. Exposure to very small particles of crystalline silica, called the ‘respirable fraction’ can lead to a range of respiratory diseases.

Generally workers have a higher risk of exposure to RCS during fabrication rather than installation of stone benchtops and other stone products, due to less cuts during installation. However, if stone products are cut on site during installation, exposure may be significant. Where no cutting, grinding, sanding or polishing of the stone product occurs during installation then no RCS should be released.

Similarly, stone benchtops and other stone products which are already installed in the home or workplace do not represent a risk to health unless they are cut, ground, sanded or polished.

Silicosis is a serious and irreversible lung disease that causes permanent disability and early death. Silica dust particles become trapped in lung tissue, causing inflammation and scarring, and reducing the lungs’ ability to take in oxygen. Symptoms of silicosis can include shortness of breath, cough and fatigue. Silicosis can result from exposure to RCS over many years, but very high short-term exposures can cause it to develop rapidly.

Workers exposed to RCS are also at increased risk for chronic obstructive pulmonary disease (COPD), kidney disease and lung cancer.

Research done in Australia and overseas has found that RCS was not adequately controlled even when wet methods of fabrication were used. It was noted that applying water to rotating tools causes RCS contaminated water mist to be generated, if controls are not used.

The stone benchtop industry

Suppliers and distributors supply raw stone slabs, either natural (mostly granite) or engineered stone, to fabrication businesses. Workers cut, grind or polish stone as part of the fabrication and installation of benchtops and similar stone products. Stone slabs are cut to size by a variety of methods, from the basic, using a grinder with a stone cutting wheel, through to bridge saws or sophisticated computer numerical control routers (CNC routers) or water jet cutters. Sink, stove or tap holes may either be cut at the factory, or onsite during installation. Some benchtops require joinery of stone. This is completed by cutting, grinding and gluing smaller pieces of stone to the main benchtop.

After joinery, the edges are bevelled and benchtops are polished using handheld grinders, polishers, edge or surface polishing machines depending on the customer’s requirements. Once finished, benchtops are installed into residential and commercial premises.
Why is silica a concern for workers in stone benchtop and other stone product fabrication and installation?

Activities including cutting, grinding and polishing stone generates dust containing respirable crystalline silica.

Engineered stone contains high amounts of crystalline silica

Crystalline silica content in stone benchtops can vary widely depending on the type of stone. Engineered stone can contain up to 95 per cent crystalline silica whereas a natural stone such as granite may contain from 20 to 60 per cent. Generally, cutting, grinding, drilling, and polishing stone products with a higher silica content creates larger amounts of very small, crystalline silica dust particles that workers may breathe. Even though silica content is generally lower in natural stone products, workers can be exposed to levels of RCS which are hazardous to their health, if adequate controls are not used.

Certain tools release more respirable crystalline silica dust into the air

Workers who operate powered hand tools to cut or grind stone, such as circular saws or grinders, have some of the highest RCS exposures of all fabricators. These tools are often used to complete tasks including cutting holes for sinks and stove tops or during shaping and joining stone. The tasks may occur in a workshop environment or on job sites during installation.

Workers performing other tasks in areas where powered hand tools are used may also be exposed to high levels of dust.

What can be done to protect workers from exposure to RCS?

The Occupational Safety and Health Act 1984 places duties on employers to ensure the health and safety of workers and others.

A combination of controls are required to protect workers’ health including engineering, isolation, work practices, personal protective equipment, worker training and consultation.

Prohibit uncontrolled dry cutting, grinding or polishing

Dry cutting, grinding or polishing stone without water suppression or local exhaust ventilation generates very high levels of dust containing RCS. These levels can exceed the capabilities of half face air purifying respirators. For this reason, engineering controls must be implemented.

Use engineering controls

Properly designed water suppression and local exhaust ventilation provide the best protection. A combination of water suppression and local exhaust ventilation has been demonstrated to be more effective at reducing dust than either on their own.

Water suppression for fabrication and installation tasks:

- Only use tools and machinery that have been specifically designed for use with water attachments.
- Use an adequate number of water feeds directed at the material and/or tool to prevent visible dust during the process.
- Maintain adequate water pressure to make sure water is reaching the material and/or tool.
- Control water spray from water suppressed tools and machinery using guards, plastic flaps or brush guards.
- Prevent workers from being able to turn water suppression systems down or off during operation.
- Use bridge saws fitted with water attachments to suppress dust when cutting slabs.
- Use water suppressed routers, water jet cutters or bridge saws to complete sink and stovetop cut outs.
- Use hand-held angle grinders fitted with multiple water feeds to deliver water to the cutting disc and point of contact with the stone.
• Use water suppressed wet-edge milling machines or polishing machines.
• Use polishers with a centre water feed to polish or grind stone.

![Figure 1 – Wet cutting stone.](image)

Local exhaust ventilation for fabrication and installation tasks:
• Only use tools and machinery that have been specifically designed for local exhaust ventilation attachments.
• Use hand tools, for example drills, circular saws, grinders, equipped with a shroud and a H class rated vacuum with a high efficiency particulate air (HEPA) filter.
• Install fixed, portable or flexible capturing hoods to capture dust at the point of generation.
• Use a combination of both water suppression and local exhaust ventilation controls, if necessary.

Isolate workers from dust generating processes
• Provide distance between the work process and the worker for example, consider operator’s positioning when using bridge saws or routers.
• Provide distance between workers using powered hand tools and other workers at the workplace.
• Provide physical barriers between different workers and workstations to prevent the water mist moving into other work areas or towards other workers.
• Provide workers with a separate room or area away from the fabrication area for food preparation and eating.

Work practices
• Use routers or water jet cutters for sink and stovetop cut outs and edge or surface polishing machines for edge polishing.
• Wet slabs before cutting, grinding or polishing to aid with dust suppression.
• Capture excess water generated from water suppressed processes through curbing and channelling.
• Prevent water pooling and drying on surfaces leaving dry dust deposits.
• Wash hands and face thoroughly before eating, drinking or leaving the workplace.
• Launder or vacuum dusty work clothing at the workplace or use a commercial laundry to avoid taking them home.
Ventilation
- Use mechanical extraction ventilation to remove contaminated air from the workplace or from a work area.
- Maintain a flow of air through open doors and windows to naturally dilute contaminated air.
- Move dust generating processes to a ventilated area (near a door or window) or outside to reduce the amount of contaminated air inside the building.

Cleaning and housekeeping
- Implement daily and thorough housekeeping and cleaning procedures for water slurry and settled dust.
- Use low pressure water, wet sweeping or a H class rated vacuum cleaner with a HEPA filter to clean floors, walls and other surfaces.
- Regularly clean vehicle track or high use areas and keep them wet during the day.
- Prohibit the use of dry sweeping or compressed air to clean surfaces or clothing.
- Provide hoses for cleaning between tasks.
- Follow the vacuum manufacturer's operator manuals/instructions for changing dust bags and filters.
- Wet slurry should be placed inside a sealed container/bin awaiting disposal.

Personal protective equipment and worker decontamination
- Provide workers with rubber boots and aprons to prevent contamination of clothing.
- Workers’ clothes and uniforms must be cleaned frequently to prevent the transfer of silica dust from work areas to break rooms, other parts of the facility, and importantly, into the home. Using industrial vacuum cleaners is an easy way to remove excess silica debris from clothes and uniforms. Portable industrial vacuum units should be positioned at the exits of silica work areas, so workers can decontaminate their clothes before leaving.
- Alternatively, after each shift, workers can change their clothing and workers’ clothing that has been contaminated with silica dust can be washed separately from other clothing.
- Water for hand, face, and hair cleaning should also be provided.

Use respiratory protective equipment
When engineering and work practice controls do not completely limit silica exposure, employers must provide workers with respiratory protective equipment (RPE) that must be worn during all tasks associated with risk of exposure to RCS.

Correctly selecting appropriate RPE
It is essential the right type of filter for the work task is used otherwise the wearer may be unprotected. Workers should be consulted when selecting RPE.

Strong consideration should be given to providing powered air purifying respirators (PAPR) because of the physical demands of the task and potential for a hot and humid work environment. Additionally, the improved protection, comfort and coolness of PAPR compared to negative pressure respirators make it more likely that the respirator will be worn at all times.

The minimum RPE required is a (negative-pressure) half face respirator with a particulate filter (P1 or P2), preferably a tight-fitting reusable respirator. Reusable respirators are recommended for workers directly working on stone products. It is recommended that disposable respirators are used only by those less exposed.

Where disposable RPE is used it must be disposed when it becomes difficult to breathe through or at the end of each shift. The cost of replacing disposable respirators daily quickly mounts and it is more cost effective in the long run to use reusable half face respirators or PAPR.
Particulate filters only protect against solid and liquid particles including microorganisms. Beards and facial stubble prevent the wearer obtaining a proper seal between their face and the respirator. Hence workers who are required to wear fitted RPE must be clean shaven.

Figure 2 – Powered air purifying respirators - Images used with permission.

Figure 3 – Half face respirator with particulate cartridge - Image used with permission.

Medical screening of RPE users

Using a respirator may impose some physical and psychological stress on a worker. Workers should be provided with an initial medical assessment prior to using a respirator. A further medical assessment may be required when there is a change that may affect the worker’s ability to wear RPE.

A medical assessment should evaluate both physical and psychological considerations including:
- chronic lung conditions such as emphysema, silicosis or asthma;
- circulatory diseases such as heart disease or anaemia;
- epileptic seizures; and
- psychological factors such as claustrophobia or anxiety.

Fit testing and fit checking

Tight fitting respirators including half face disposable, reusable or full face respirators and PAPR rely on an air tight seal between the wearer’s face and the respirator to provide adequate protection. If there is not a good seal, contaminated air will leak into the respirator and the wearer may not get the level of protection that is needed to protect their health.

1 Loose-fitting PAPRs, in which the hood or helmet is designed to form only a partial seal with the wearer’s face or hoods which seal loosely around the wearer’s neck or shoulders, do not require fit testing.
Fit testing measures the effectiveness of the seal between the respirator and the wearer's face. There are two types of facial fit test:

- **Qualitative** – a pass/fail test that relies on the wearer's ability to taste or smell a test agent. This type of test can only be used on half face respirators.
- **Quantitative** – uses specialised equipment to measure how much air leaks into the respirator. This type can be used on half or full face respirators.

Proven methods of fit testing are found in *AS/NZS 1715 Selection, use and maintenance of respiratory protective equipment*.

Fit testing must be carried out by a competent person; this could be a consultant, someone in-house or a representative from a RPE manufacturer or supplier.

Fit testing should be conducted:

- each time a new make or model of respirator is issued;
- whenever there is a change in the wearer's facial characteristics or features which may affect the facial seal, for example large weight loss or gain; and
- on a regular basis upon risk assessment, one or two yearly is reasonable.

Each time a tight-fitting respirator is put on, the wearer should carry out a fit check. A fit check is a quick check to ensure the respirator, which has been fit tested, has been properly positioned on the face and there is a good seal between the respirator and face. Fit checks do not replace the need for a fit test. Follow the manufacturer's instructions on how to carry out a fit check.

Training workers in the correct use and maintenance of RPE

When issuing RPE, training is required to ensure that workers correctly use and maintain RPE. Training must be provided by a competent person; this could be a consultant, someone in-house or a representative from a RPE manufacturer or supplier.

Training should cover the following topics:

- why RPE is required;
- when RPE is required to be worn;
- how RPE works;
- the limitations of RPE;
- how to correctly put on and take off RPE;
- how to conduct a fit check;
- how to clean and maintain RPE;
- when and how to replace filters; and
- how and where to store RPE when not in use.

Ensuring RPE is correctly used

Ongoing training and supervision is required to ensure that RPE is used correctly by workers. Occupational safety and health laws require workers to take reasonable care for their own health and safety, comply with any reasonable instruction, and cooperate with any reasonable policy or requirement of the employer relating to health or safety. Specifically for RPE, a worker must use or wear RPE in accordance with any information, training or reasonable instruction given.
Inspecting, maintaining and repairing RPE

RPE needs to be inspected, maintained and repaired to make sure it continues to function properly and protect workers from exposure.

A system of maintenance should include:
• cleaning and disinfection;
• inspection;
• repair and replacement of components, including filters; and
• proper storage.

Workers must not wear any damaged, defective or contaminated RPE. Also, workers must not intentionally misuse or damage RPE.

Correct storage

Consult the manufacturer's instructions when storing RPE. Each worker should be provided with a dedicated container to store their RPE. Clean, dry RPE should be stored away from dust and out of direct sunlight. Face pieces should be stored, so that they are not subject to distortion.

Keeping records

Records assist in keeping track of the RPE program. Records should include the following:
• details of issue including date (for reusable only);
• user records including training provided, and medical screening results;
• fit testing records for each worker including:
 • type of test performed;
 • make, model, style and size of respirator tested;
 • date of the test;
 • result of the test;
 • maintenance records including filter replacement and RPE maintenance schedules; and
• RPE program records including procedures for use and audits or evaluations.

Control exposure during installation of stone benchtops and other stone products

Workers may be exposed to crystalline silica if cutting, grinding, sanding and polishing during the installation of stone benchtops. Generally workers have a higher risk of exposure to RCS during fabrication rather than installation of the stone benchtop, due to less cuts during installation. However, should adjustments be required at the time of installation, uncontrolled dry cutting must not be conducted. Suitable tools, with wet and/or local extraction ventilation dust suppression, must be used.

Workers installing stone benchtops that have been completely fabricated in a workshop with no additional cutting or fabrication required on site should have minimal exposure to RCS compared to workers involved in fabrication.

Using adequate control measures will reduce the exposure of workers and dust contaminating the site or a customer's home during installation.

The dimensions and locations of cut outs should be obtained prior to installation so they can be completed at the workshop. Alterations during installation can be reduced by accurate measuring, however, when required consider taking the slab back to the workshop if practicable.

When cutting or grinding on site:
• work outdoors or in well-ventilated areas;
• use water suppression or tools equipped with dust shrouds coupled with a H class vacuum with a HEPA filter;
• use a H class HEPA-filtered vacuum to clean up dust as soon as practicable; and
• wear a half-face respirator with a P1 or P2 filter or preferably a PAPR.

A range of electric and air powered tools are now available that are designed to be used with water dust suppression.

Providing information, training, instruction and supervision

Information, training, instruction and supervision must be provided to workers and other persons at the workplace, such as visitors. The information, training and instruction provided must be in a way that it is easily understood.

Information, training and instruction should include the following:

• information about RCS and the risks to the worker from exposure;
• control measures implemented and how to use and maintain them correctly;
• arrangements in place to deal with emergencies, including evacuation procedures;
• the selection, use, maintenance and storage of personal protective equipment (PPE) required to control risks and the limitations of the PPE;
• information about health surveillance required and the worker’s rights and obligations; and
• work practices and procedures to be followed when handling, processing, storing, transporting, cleaning up and disposing of stone slabs and/or dust.

Records of training provided must be kept, documenting the date, subject and content, and names of attendees.

Provide health surveillance for workers exposed to RCS

Health surveillance is required for fabrication and installation workers, because there can be a significant risk to worker’s health if the exposure to RCS is not fully controlled. All workers must be provided with information about the purpose of health surveillance and a copy of their health surveillance results.

Health surveillance should be provided before a worker starts work to establish a baseline from which changes can be detected. Periodic health surveillance intervals should be decided in consultation with the doctor. Health surveillance is also recommended when a person leaves employment at the workplace.

How to choose a suitable medical practitioner

Health surveillance must be supervised by an Appointed Medical Practitioner, appointed by the employer. This should be a doctor with experience in health surveillance. As an example, any doctor who is a fellow of the Australian Faculty of Occupational and Environmental Medicine will have the necessary experience.

A list of these practitioners can be found on The Royal Australasian College of Physicians’ website.

These lists are not exhaustive and other doctors may have the necessary experience required to conduct health surveillance for RCS.

Workers must be consulted when selecting a doctor and their preference considered if they request a particular doctor.
Testing required

Make sure the Appointed Medical Practitioner provides a minimum level of health surveillance that includes:

- demographic, medical and occupational history;
- records of personal exposure;
- standardised respiratory questionnaire;
- standardised respiratory function test, for example, FEV1, FVC and FEV1/FVC; and
- chest X-ray full size PA view.

Further guidance on health surveillance for RCS is available from Safe Work Australia at
www.safeworkaustralia.gov.au Health surveillance is known as "health monitoring" under the national model Work Health and Safety legislation.

Who pays for health surveillance?

The employer must pay the costs of health surveillance if it is required. This includes the costs of the medical services provided and the travel and wage costs of the worker.

What to tell the Appointed Medical Practitioner

The following information must be supplied to the Appointed Medical Practitioner:

- The name and address of the business.
- The name and date of birth of the worker.
- A description of all of the worker’s tasks that relate to respirable crystalline silica.
- How long the worker has been doing the work.

The Appointed Medical Practitioner advises the workplace of the outcome of the health surveillance and makes recommendations to improve controls where necessary. The workplace should consider the recommendations and advice provided by the Appointed Medical Practitioner, and take action where required.

Informing workers’ of their results

The Appointed Medical Practitioner is required to provide workers with their health surveillance results.

Informing the WorkSafe Commissioner

The Appointed Medical Practitioner is required to notify the WorkSafe Western Australia Commissioner when health surveillance results are consistent with exposure to RCS.

Consulting with workers

Employers are required to consult and co-operate with safety and health representatives, where they exist in the workplace, and with other employees on occupational safety and health matters, including RCS.

Consultation and co-operation between employers and employees is the key to providing and maintaining a safe and healthy workplace.

Participation of employees is important, as they are most likely to know about risks associated with their work. Safety and health representatives, where they exist, have an important role in this consultation.

Employer and employee involvement in identifying hazards and assessing and controlling the risks will help ensure employees have a commitment to this process and any changes that result.
Effective consultation includes:

- talking about health and safety matters;
- listening and raising concerns;
- seeking and sharing views and information; and
- considering what workers say before making decisions.

Workers must be consulted on health and safety matters relating to RCS including when:

- managing risks of RCS exposure;
- making changes to processes or procedures that generate RCS;
- making changes to controls to protect workers from RCS;
- resolving health and safety issues;
- providing health surveillance to workers exposed to RCS;
- monitoring the conditions at the workplace; and
- providing information and training for workers.

Acknowledgement

Information in this guide has been adapted (with permission) from a document published by the Queensland Government.

Further information

Further information relating to many of the matters referred to above may be obtained from:

Chamber of Commerce and Industry

www.cciwa.com

180 Hay Street
East Perth WA 6004
Telephone: 08 9365 7555
Email: info@cciwa.asn.au

UnionsWA

Level 4
4/445 Hay St
Perth WA 6000
Telephone: 08 9328 7877
Email: unionsyes@unionswa.com.au

Department of Mines, Industry Regulation and Safety

303 Sevenoaks St
Cannington WA 6107
Tel: 1300 307 877
Email: safety@dmirs.wa.gov.au

National Industrial Chemicals Notification and Assessment Scheme (NICNAS)

The Cancer Council

Safe Work Australia
